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• Operation interruption
- A crash or power failure
- A file operation often consists of many I/O updates to the storage
- An example: mv ./dir1/file1 ./dir2/file2

Threats to FS Reliability
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• Operation interruption
- A crash or power failure
- A file operation often consists of many I/O updates to the storage
- An example: mv ./dir1/file1 ./dir2/file2

qWriting the dir1 directory file to remove file1
q (optional) Growing the dir2 directory’s file to include another block of storage to

accommodate a new directory entry for file2
qWriting the new directory entry to the directory file
q Updating the last-modified time of the dir1 directory
q Updating the file system’s free space bitmap
q Updating the size and last-modified time of the dir2 directory

- At physical level, operations complete one at a time

Threats to FS Reliability
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• Operation interruption
- A crash or power failure
- A file operation often consists of many I/O updates to the storage
- An example: mv ./dir1/file1 ./dir2/file2
- At physical level, operations complete one at a time

• Loss of stored data
- Either physical or electric

Threats to FS Reliability
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• Reliability (可靠性): the probability that the storage system will continue
to be reliable for some specified period of time
• Availability (可用性): the probability that the storage system will be

available at any given time

Reliability vs. Availability

This is a present from a small, distant world, a token of our sounds, our 
science, our images, our music, our thoughts and our feelings. We are 
attempting to survive our time so we may live into yours.

— Jimmy Carter

Voyager Golden Record
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• “All or nothing”
- Either an update is completed, or not at all
- Must be guaranteed whenever a crash happens
- Must be transparent to users/apps
- An example: transfer $100 from Bob’s account to Alice’s account

• Quite similar to the critical section problem in concurrency
- Avoid someone observing the state in an intermediate, inconsistent state
- No control over “when it happens”

What a Reliable FS Does?
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• Transactions for atomic updates
- Redo Logging

• Redundancy for media failures
- RAID

Goals for Today



12/6/24 Mengwei Xu @ BUPT 8

• Transactions for atomic updates
- Redo Logging

• Redundancy for media failures
- RAID

Goals for Today
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• Sequence operations in a specific order
- Careful design to allow sequence to be interrupted safely

• Post-crash recovery
- Read data structures to see if there were any operations in progress
- Clean up/finish as needed

• Approach taken by 
- FAT and FFS (fsck) to protect filesystem structure/metadata
- Many app-level recovery schemes (e.g., Word, emacs autosaves)

Reliability Approach #1: Careful Ordering
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FFS: Create a File
Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of free 

blocks and inodes
• Update directory with 

file name ® inode 
number

• Update modify time for 
directory

Recovery (file system check, fsck) :
• Scan inode table
• If any unlinked files (not in any 

directory), delete or put in lost 
& found dir

• Compare free block bitmap 
against inode trees

• Scan directories for missing 
update/access times

Time proportional to disk size
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• Complex reasoning
- So many possible operations and failures

• Slow updates
- File systems are forced to insert sync operations or barriers between

dependent operations

• Extremely slow recovery
- Need to scan all of its disks for inconsistent metadata structures

Issues with Approach #1
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• Use Transactions (事务) for atomic updates
- Ensure that multiple related updates are performed atomically
- i.e., if a crash occurs in the middle, the state of the systems reflects either all or 

none of the updates
- Most modern file systems use transactions internally to update filesystem 

structures and metadata
- Many applications implement their own transactions

• They extend concept of atomic update from memory to stable storage
- Atomically update multiple persistent data structures

Transactions



12/6/24 Mengwei Xu @ BUPT 13

• An atomic sequence of actions (reads/writes) on a storage system (or 
database)

• That takes it from one consistent state to another

Transactions

consistent state 1 consistent state 2
transaction
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• Begin a transaction – get transaction id

• Do a bunch of updates
- If any fail along the way, roll-back
- Or, if any conflicts with other transactions, roll-back

• Commit the transaction

Typical Structure
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“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00 WHERE 
name = 'Alice'; 

UPDATE branches SET balance = balance - 100.00 WHERE 
name = (SELECT branch_name FROM accounts WHERE name = 
'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE 
name = 'Bob'; 

UPDATE branches SET balance = balance + 100.00 WHERE 
name = (SELECT branch_name FROM accounts WHERE name = 
'Bob');

BEGIN;    --BEGIN TRANSACTION

COMMIT;    --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account
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• Atomicity: all actions in the transaction happen, or none happen

• Consistency: transactions maintain data integrity, e.g.,
- Balance cannot be negative
- Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated from that of all others; 
no problems from concurrency

• Durability: if a transaction commits, its effects persist despite crashes

The Key Properties of Transactions
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• Instead of modifying data structures on disk directly, write changes to a 
journal/log
- Intention list: set of changes we intend to make
- Log/Journal is append-only
- Single commit record commits transaction

• Once changes are in log, it is safe to apply changes to data structures 
on disk
- Recovery can read log to see what changes were intended
- Can take our time making the changes

q As long as new requests consult the log first

• Basic assumption: 
- Updates to sectors are atomic and ordered

Logging
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• Log:  an append-only file containing log records
- <start t>

qtransaction t has begun
- <t,x,v>

qtransaction t has updated block x and its new value is v
• Can log block “diffs” instead of full blocks
• Can log operations instead of data 

- <commit t>
qtransaction t has committed – updates will survive a crash

• Committing involves writing the records – the home data needn’t be 
updated at this time
• Logs are often kept in a separation partition
• Once transactions are committed, logs can be cleaned up!

Logging
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Implementing Transactions: Redo Logging

• Recovery
- Read log
- Redo any operations for 

committed transactions
- Garbage collect log

• Prepare
- Write all changes/updates to log (日志)
- Can happen at once, or over time
- Wait until all updates are written in log

• Commit
- Append a commit record to the log
- Or can roll back (abandoned), write a roll-

back record
• Write-back

- Write all of the transaction’s updates to disk
• Garbage collection

- Reclaim space in log



12/6/24 Mengwei Xu @ BUPT 20

• Prepare
- Write all changes/updates to log (日志)
- Can happen at once, or over time
- Wait until all updates are written in log

• Commit
- Append a commit record to the log
- Or can roll back (abandoned), write a roll-

back record
• Write-back

- Write all of the transaction’s updates to disk
• Garbage collection

- Reclaim space in log

Implementing Transactions: Redo Logging

An atomic operation
• Before it, we can safely roll-back
• After it, the transaction must take

effect
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Example #1
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• Find free data block(s)
• Find free inode entry
• Find dirent insertion point
-----------------------------------------
• Write map (i.e., mark used)
• Write inode entry to point to block(s)
• Write dirent to point to inode

Example #2: Creating a File

Data blocks

Free space map

Inode table

Directory entries

…
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• Find free data block(s)
• Find free inode entry
• Find dirent insertion point
---------------------------------------------------------
• [log] Write map (used)
• [log] Write inode entry to point to block(s)
• [log] Write dirent to point to inode

Example #2: Creating a File

Data blocks

Free space 
map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it
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• After Commit

• All access to file system first looks in log

• Eventually copy changes to disk

ReDo Log 

Data blocks

Free space 
map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash)

headtail

pending

done

st
ar

t

co
m

m
it

tail tail tail tail
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• Upon recovery scan the log

• Detect transaction start with no commit

• Discard log entries

• Disk remains unchanged

Crash During Logging – Recover

Data blocks

Free space 
map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t
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• Scan log, find start

• Find matching commit

• Redo it as usual
- Or just let it happen later

Recovery After Commit

Data blocks

Free space 
map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it
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• Deal with concurrent transactions
- Must identify which transaction does a record belong to

• Repeated write-backs are OK
- Works for idempotent (幂等) updates:“write 42 to each byte of sector 74”
- Redo log systems do not permit non-idempotent records such as “add 42 to

each byte in sector 74”.

• Restarting recovery is OK
- If another crash occurs during recovery

Implementation Details
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• The performance of redo logging is not as bad as it looks like:
- Log updates are sequential
- Asynchronous write-back

q Low latency for commit(); high throughput as updates can be batched
- Group commit: combine a set of transaction commits into one log write

q Amortize the cost of initiating the write (e.g., seek and rotational delays).

• New requests (e.g., reads) need to consult the log first to ensure the
data consistency
- Can be alleviated by caching

• Ordering is essential, as we must ensure:
- A transaction’s updates are on disk in the log before the commit is
- The commit is on disk before any of the write-backs are
- All of the write-backs are on disk before a transaction’s log records are garbage 

collected. 

Implementation Details
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• Two ways to use transactions in file systems: journaling (日志) and
logging

• Journaling: apply updates to the system’s metadata via transactions
- Microsoft’s NTFS,Apple’s HFS+, and Linux’s XFS/JFS

• (Full) Logging: apply both metadata and data in transactions
- Linux’s ext3 and ext4 can be configured to use either journaling or logging

Transactional File Systems
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• Applies updates to system metadata (inodes, bitmaps, directories, and
indirect blocks) using transactions 
- So those critical data structures are always consistent

• Updates to non-directory files (i.e., user stuff) can be done in place 
(without logs), full logging optional
- Avoids writing file contents twice
- If a program using a journaling file system requires atomic multi-block updates, it

needs to provide them itself

Journaling File Systems
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• To update file system, write a new version 
of the file system containing the update
- Never update in place
- Reuse existing unchanged disk blocks

• Optimization: batch updates
- Transform many small, random writes into

large, sequential writes
• Approach taken in network file server 

appliances
- NetApp’s Write Anywhere File Layout 

(WAFL)
- ZFS (Sun/Oracle) and OpenZFS

Copy-on-Write File System
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• Transactions for atomic updates
- Redo Logging

• Redundancy for media failures
- RAID

Goals for Today
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• Sector and page failure: one or more individual sectors of a disk are
lost, but the rest of the disk continues to operate correctly
• Full disk failure: a device stops being able to service reads or writes to

all sectors

Storage Devices Failure

Single-event upset (单粒子翻转）
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• Invented by David Patterson, Garth A. Gibson, and Randy Katz here at 
UCB in 1987

• Data stored on multiple disks (redundancy)

• Either in software or hardware
- In hardware case, done by disk controller ; file system may not even know that 

there is more than one disk in use

• Initially, five levels of RAID (more now)

RAID: Redundant Arrays of Inexpensive Disks
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• Each disk is fully duplicated onto its “shadow”
- For high I/O rate, high availability environments
- Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
- Logical write = two physical writes
- Highest bandwidth when disk heads and rotation fully synchronized (hard to do)

• Reads may be optimized
- Can have two independent reads to same data

• Recovery: 
- Disk failure Þ replace disk and copy data to new disk
- Hot Spare: idle disk already attached to system to be used for immediate replacement

RAID 1: Disk Mirroring/Shadowing

recovery
group



12/6/24 Mengwei Xu @ BUPT 36

• XOR (^), or eXclusive OR, is a bitwise operator that returns true (1) for odd 
frequencies of 1.The XOR truth table is as follows:
- 1 ^ 1 = 0
- 1 ^ 0 = 1
- 0 ^ 1 = 1
- 0 ^ 0 = 0

• XOR is commutative.
- a^b = b^a.

• XOR is associative.
- a^(b^c) = (a^b)^c = (a^c)^b.

• XOR is self-inverse.
- Any number XOR’ed with itself evaluates to 0.

• a^a = 0.
- 0 is the identity element for XOR.

• This means, any number XOR’ed with 0 remains unchanged.
- a^0 = a.

Magic XOR (异或)
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RAID 5+: High I/O Rate Parity
• Data stripped across 

multiple disks 
– Successive blocks stored on 

successive 
(non-parity) disks

– Increased bandwidth over single disk
• Parity block (in green) 

constructed by XORing (异或) 
data blocks in stripe

– P0=D0ÅD1ÅD2ÅD3
– Can destroy any one disk and still 

reconstruct data
– Suppose Disk 3 fails, then can

reconstruct: D2=D0ÅD1ÅD3ÅP0

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
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RAID 5+: High I/O Rate Parity
Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

• Rotating parity (奇偶校验)
- The parity needs to be updated

more often than normal data
blocks.

• Striping data
- Balance parallelism vs. sequential

access efficiency

• RAID 5 can recover the failed
disk only if (i) only one disk fails
and (ii) the failed disk is known.
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RAID 5+: High I/O Rate Parity

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

• What I/O operations would occur if
we want to update D21 in this figure?
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RAID 5+: High I/O Rate Parity

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

• What I/O operations would occur if
we want to update D21 in this figure?
- Read D21(old)
- Read P5(old)
- Compute tmp=P5(old)ÅD21(old)
- Compute P5(new)=tmp ÅD21(new)
- Write D21(new)
- Write P5(new)
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• Highly durable – hard to destroy all copies
• Highly available for reads – read any copy
• Low availability for writes

- Can’t write if any one replica is not up
- Or – need relaxed consistency model

• Reliability? – availability, security, durability, fault-tolerance

Higher Durability/Reliability through Geographic Replication

Replica #1

Replica #2

Replica #n
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Societal Scale Information Systems

Scalable, Reliable,
Secure Services

MEMS for 
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce
 …

• The world is a large distributed system
– Microprocessors in everything
– Vast infrastructure behind them

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet
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• Centralized System: System in which major functions are performed by 
a single physical computer
- Originally, everything on single computer
- Later : client/server model

Centralized vs Distributed Systems

Server

Client/Server Model
Peer-to-Peer Model
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• Distributed System: physically separate computers working together on 
some task
- Early model: multiple servers working together

qProbably in the same room or building
qOften called a “cluster”

- Later models: peer-to-peer/wide-spread collaboration

Centralized vs Distributed Systems

Server

Client/Server Model
Peer-to-Peer Model
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• Why do we want distributed systems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: much easier for users to collaborate through network resources 

(such as network file systems)

• The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure 

Distributed Systems: Motivation/Issues/Promise
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• Reality has been disappointing
- Worse availability: depend on every machine being up

qLamport: “a distributed system is one where I can’t do work because some 
machine I’ve never heard of isn’t working!”

- Worse reliability: can lose data if any machine crashes
- Worse security: anyone in world can break into system

• Coordination is more difficult
- Must coordinate multiple copies of shared state information (using only a 

network)
- What would be easy in a centralized system becomes a lot more difficult

Distributed Systems: Reality
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• Transparency: the ability of the system to mask its complexity behind a 
simple interface
• Possible transparencies:

- Location: Can’t tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can’t tell how many copies of resource exist
- Concurrency: Can’t tell how many users there are
- Parallelism: System may speed up large jobs by splitting them into smaller pieces
- Fault Tolerance: System may hide various things that go wrong

• Transparency and collaboration require some way for different 
processors to communicate with one another

Distributed Systems: Goals/Requirements
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• The FastFile file system uses an inode array to organize the files on disk. 
Each inode consists of a user id (2 bytes), three time stamps (4 bytes 
each), protection bits (2 bytes), a reference count (2 byte), a file type (2 
bytes) and the size (4 bytes). Additionally, the inode contains 13 direct 
indexes, 1 index to a 1st-level index table, 1 index to a 2nd-level index 
table, and 1 index to a 3rd level index table. The file system also stores 
the first 436 bytes of each file in the inode.
- Assume a disk sector is 512 bytes, and assume that any auxilliary index table 

takes up an entire sector, what is the maximum size for a file in this system.
- Is there any benefit for including the first 436 bytes of the file in the inode?

Homework-1
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• When user tries to write a file, the file system needs to detect if that file 
is a directory so that it can restrict writes to maintain the directory's 
internal consistency. Given a file's name, how would you design a file 
system to keep track of whether each file is a regular file or a directory?
- In FAT
- In FFS
- In NTFS

Homework-2
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• Suppose a variation of FFS includes in each inode 12 direct, 1 indirect, 1 
double indirect, 2 triple indirect, and 1 quadruple indirect pointers. 
Assuming 6 KB blocks and 6-byte pointers.
- What is the largest file that can be accessed with direct pointers only?
- What is the largest file that can be accessed in total?

Homework-3
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• Consider a disk queue holding requests to the following cylinders in the 
listed order : 116, 22, 3, 11, 75, 185, 100, 87. Using the elevator 
scheduling algorithm, what is the order that the requests are serviced, 
assuming the disk head is at cylinder 88 and moving upward through the 
cylinders?

Homework-4
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• Search for how different RAID versions (at least 5) work differently and
list a table to compare them.

Homework-5


